MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	11

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1	$kx^{2} + (2k - 8)x + k = 0$ $b^{2} - 4ac > 0 \text{ so } (2k - 8)^{2} - 4k^{2} (>0)$ $4k^{2} - 32k + 64 - 4k^{2} (>0)$ leading to $k < 2$ only	M1 DM1 DM1 A1	for attempt to obtain a 3 term quadratic in the form $ax^2 + bx + c = 0$, where b contains a term in k and a constant for use of $b^2 - 4ac$ for attempt to simplify and solve for k A1 must have correct sign
		AI	AT must have correct sign
2	$\left(\frac{dy}{dx}\right) = -5x(+c)$ When $x = -1$, $\frac{dy}{dx} = 2$ leading to	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	u.		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} = \dots$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	
	Alternative scheme:		
	$y = ax^{2} + bx + c$ so $\frac{dy}{dx} = 2ax + b$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in <i>a</i> and <i>b</i>
	When $x = -1$, $\frac{dy}{dx} = 2$		
	so $-2a+b=2$	A1	for a correct equation
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$	DM1	for a second differentiation to obtain <i>a</i>
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for <i>a</i> , <i>b</i> and <i>c</i> all correct

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper060611

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	$LHS = \tan\theta + \cot\theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct context
	$= \sec \theta \csc \theta$	A1	Must be convinced as AG
	Alternate scheme:		
	LHS = $\tan \theta + \cot \theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{\tan\theta}$	B1	for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' $\sec^2 \theta$
	$= \csc\theta \sec\theta$	A1	Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	
(iii)	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$	B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for ${}^{7}C_6$
	= 203	B1	
	Or $1W 5M = 63$ 2W 4M = 105	B1	for 1 case correct, must be considering more than 1 different case, allow <i>C</i> notation
	3W 3M = 35 Total = 203	B1 B1	for the other 2 cases, allow <i>C</i> notation for final result

Cambridge IGCSE - October/November 20150605 (i) $\frac{dy}{dx} = (x-3)\frac{4x}{2x^2+1} + \ln(2x^2+1)$ when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe or 1.31 or betterB1 M1 A1for correct differentiation for attempt to differentiation for correct product, term where appropriate for correct final answer(ii) $\partial y \approx$ (answer to (i)) × 0.03 = 0.0393, allow awrt 0.039M1 A1FT6(i) $A \cap B = \{3\}$ (ii)B1(iii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1(iii) $A' \cap C = \{1, 5, 7, 11\}$ B1	on of ln function ate a product ns must be bracketed changes numerical answer to
initialinitialinitialinitialwhen $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oe or 1.31 or betterA1A1(ii) $\partial y \approx$ (answer to (i)) \times 0.03 $= 0.0393$, allow awrt 0.039M1 A1for attempt to use small follow through on <i>their</i> (i) allow to 2 sf or better6(i) $A \cap B = \{3\}$ B1(ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	ate a product ns must be bracketed changes numerical answer to
when $x = 2$, $\frac{dy}{dx} = -\frac{8}{9} + \ln 9$ oeA1for attempt to unretentor 1.31 or betterA1for correct product, term where appropriate(ii) $\partial y \approx$ (answer to (i)) × 0.03 = 0.0393, allow awrt 0.039M1 A1FTfor attempt to use small follow through on <i>their</i> (i) allow to 2 sf or bette6(i) $A \cap B = \{3\}$ B1(ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	ate a product ns must be bracketed changes numerical answer to
or 1.31 or betterA1Where appropriate for correct final answer(ii) $\partial y \approx$ (answer to (i)) \times 0.03 = 0.0393, allow awrt 0.039M1 A1FTfor attempt to use small follow through on <i>their</i> (i) allow to 2 sf or bette6(i) $A \cap B = \{3\}$ $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	changes numerical answer to
or 1.31 or betterA1Where appropriate for correct final answer(ii) $\partial y \approx$ (answer to (i)) \times 0.03 = 0.0393, allow awrt 0.039M1 A1FTfor attempt to use small 	changes numerical answer to
$= 0.0393$, allow awrt 0.039 A1FT follow through on their 6 (i) $A \cap B = \{3\}$ B1 (ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	numerical answer to
6 (i) $A \cap B = \{3\}$ B1 (ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	
(ii) $A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$ B1	
(iii) $A' \cap C = \{1, 5, 7, 11\}$ B1	
(iv) $(D \cup B)' = \{1, 9\}$ B1	
(v) Any set containing up to 5 positive even B1 numbers ≤ 12	
7 (i) Gradient = $\frac{0.2}{0.8}$ = 0.25 M1 for attempt to find the g	gradient
b = 0.25 A1	
Either $6 = 0.25(2.2) + c$ M1for a correct substitution either point and attemptOr $5.8 = 0.25(1.4) + c$ M1	
Iterating to $A = 233$ or $e^{5.45}$ A1solution by simultaneous dealing with $c = \ln A$	is equations
Alternative schemes:	
Either Or	
$6 = b(2.2) + c e^{6} = A(e^{2.2})^{b} M1 for 2 simultaneous equa 5.8 = b(1.4) + c e^{5.8} = A(e^{1.4})^{b}$	ations as shown
DM1 for attempt to solve to g	get at least one
Leading to $A = 233$ or $e^{5.45}$ and $b = 0.25$ A1, A1 solution for one unknow A1 for each	
(ii) Either $y = 233 \times 5^{0.25}$ M1 for correct use of either	equation in attempt
Or $\ln y = 0.25 \ln 5 + \ln 233$ to obtain y using <i>their</i> v found in (i)	
leading to $y = 348$ A1	

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2015060611

8	$\frac{dy}{dx} = \frac{2(x^2+5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}(2x-1)}{x^2+5}$ or $\frac{dy}{dx} = 2(x^2+5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}(2x-1)$	B1 M1 A1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified
	When $x = 2$, $y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$	B1, B1	B1 for each
	(allow 0.444 or 0.44) Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$ (9y = 4x + 1)	M1 A1	for attempt at straight line, must be tangent using <i>their</i> gradient and y
		AI	allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$
			only Condone omission of <i>c</i>
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$	M1	for attempt to find the area of the trapezium
	=12.5	A1	
	Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$=\left(\frac{2}{3}\times27\right)-\frac{16}{3}-\frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
	$=\frac{1}{6}$ or awrt 0.17	A1	
	Alternative scheme:		
	Equation of $AB \ y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_{0}^{\delta} \sqrt{4+x} - \left(\frac{1}{5}x+2\right) dx$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left[\frac{2}{3}\left(4+x\right)^{\frac{3}{2}} - \frac{x^{2}}{10} - 2x\right]_{0}^{5}$		
	$=\left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$	A1	for $18 - \frac{16}{3}$ or equivalent
	$=\frac{1}{6}$ or awrt 0.17	A1 A1	for 12.5 or equivalent
L		í <u> </u>	1

Page	Mark Scheme			Syllabus Paper			
	Cambridge IGCSE – October/November 2015 0606 11						
10 (i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing	or a convincing argument			
(ii)	Angle $CBE = \frac{2\pi}{3}$	B1	must be in terms of π , allow 0.667 π , or better for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>				
(iii)	$DE = 10\sqrt{3}$	M1					
		A1	for correct <i>DE</i> ,	better			
	Arc $CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to find CBE (20.94)	ind arc length	with <i>their</i> angle		
	Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	M1 for $10 + 10 + DE + an arc$ A1 allow unsimplified		ngth		
	= 58.3 or 58.2	A1					
(iv)	Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1	for sector area using <i>their</i> angle <i>CE</i> unsimplified, may be implied		-		
	Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area must be the san unsimplified, m	ne as <i>their</i> an			
	Area $=\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148 A1 allow in either for			form			

Page			Syllabus Paper		
	Cambridge IGCSE – October/November 2015		2015 0606 11		
11 (a) (i)	$(x+3)^2 - 5$	B1, B1	B1 for 3, B1 for – 5		
(ii)	$y \ge 4 \text{ or } f \ge 4$	B1	Correct notation or statement must be used		
(iii)	$y = \sqrt{x+5} - 3$	M1	for a correct attempt to find the inverse function		
	Domain $x \ge 4$	A1 B1FT	must be in the correct form and positive root only Follow through on <i>their</i> answer to (ii), must be using x		
(b)	$h^2 g(x) = h^2(e^x)$	M1	for correct order		
	$=h(5e^x+2)$	M1	for dealing with h^2		
	$=25e^{x}+12$				
	$25e^{x} + 12 = 37,$	DM1	for solution of equation (dependent on both previous M marks)		
	leading to $x = 0$	A1			
	Alternative scheme 1:				
	$hg(x) = h^{-1}(37)$	M1	for correct order		
	$h^{-1}(37) = 7$	M1	for dealing with $h^{-1}(37)$		
	$5e^{x} + 2 = 7,$	DM1	for solution of equation (dependent on both		
	leading to $x = 0$	A1	previous M marks)		
	Alternative scheme 2:				
	$g(x) = h^{-2}(37)$	M1	for correct order		
	$h^{-2}(37) = 1$	M1	for dealing with $h^{-2}(37)$		
	$e^x = 1,$	DM1	for solution of equation (dependent on both		
	leading to $x = 0$	A1	previous M marks)		

	Page 8 Mark Scheme			Syllabus	Paper		
	Cambridge IGCSE – October/November 2015		2015	0606	11		
12		$x^{2} + 6x - 16 = 0$ or $y^{2} + 10y - 75 = 0$ leading to	M1	for attempt to obtain a 3 term quadratic in terms of one variable only			
		(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1		attempt to solve quadratic equation		
		so $x = 2$, $y = 5$ and $x = -8$, $y = -15$	A1, A1	A1 for each 'pai	r' of values.		
		Midpoint $(-3, -5)$	B1				
		Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$ Perpendicular bisector:					
	$y+5=-\frac{1}{2}(x+3)$ M1			for attempt at straight line equation, must be using midpoint and perpendicular gradient			
	(2y + x + 13 = 0)	M1	for use of $y = 0$		•		
		Point <i>C</i> (–13, 0)		(but not $2x - y$ -		-1	
		Area $=\frac{1}{2}\begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$ = 125	M1 A1		•	ea, may be using C must lie on the	
		Alternative method for area: $CM^2 = 125, AB^2 = 500$ Area $= \frac{1}{2} \times \sqrt{125} \times \sqrt{500}$	M1	for correct attem <i>their</i> values for 2		ea may be using	
		= 125	A1				